DEVOIR SURVEILLE N°1
Cliquez ici pour obtenir
le document au format Word compressé avec winzip.
Exercice n°1 : 3 points
Trouver, si elle existe, la limite de quand x tend vers 1.
Exercice n°2 : 17 points
A) Soit g la fonction définie sur par : .
On désigne par C sa courbe représentative dans un plan rapporté à un repère orthonormal .
1) Trouver la limite de g en . Qu’en déduit on pour C ?
2) Démontrer que avec pour tout x appartenant à I.
3)
Etudier les variations de P sur I et démontrer que
l’équation admet
une unique solution dans
I, vérifiant .
En déduire le signe de sur
I.
4) Déterminer les variations de g sur I.
5)
a) Déterminer une équation de
la tangente T à la courbe C au point .
b) Préciser la position de C par rapport à T.
B) Soit la fonction f définie par :, .
Trouver pour que f soit continue en .
Pour
contacter le webmaster .
Pour signer le
livre d'or .
Problème
de résolution des exercices ? allez sur le Forum.